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Introduction

The Cu-Cr-Nb alloys were originally developed under the Earth-To-Orbit program for the Orbital Transfer Vehicle

(OTV). The planned use was the combustion chamber of the regeneratively cooled rocket engine. The primary

materials properties of interest were the elevated temperature tensile and creep strengths, low cycle fatigue (LCF)
lives, and thermal conductivities. The currently used alloy NARIoy-Z (Cu-3 wt.% Ag-0.5 wt.% Zr) was used as the

standard for comparison for the new alloys.

The Cu-Cr-Nb alloys are strengthened by the high melting point intermetaUic compound Cr2Nb. The density of this

phase is lower than Cu, so as the alloying levels are increased the density of the alloy decreases (Figure 7). At the
higher alloying level tested, Cu-8 at.% Cro4 at.% Nb (Cu-8 Cr-4 Nb) has a 4.1% lower density than NARIoy-Z.

The objective of the current work is to expand the developmental work conducted previously to develop a database

suitable for the initial design of a hypersonic vehicle heat exchanger. Experimental work was concentrated on the

tensile strength, creep lives, LCF lives and thermal conductivities. The mechanical properties will be presented in

this paper. Thermal conductivities have been previously reported (1).

Experimental Procedure

All Cu-Cr-Nb samples were made from conventionally Ar gas atomized powder produced by the Special Metals

Corporation. The powder was canned in 5.08 cm (2") O.D. mild steel extrusion cans. The cans were extruded at

857°C (1575°F) using a round die with a 16:1 reduction in area.

Samples were machined from the extruded bars. For tensile and creep samples, a subsize design conforming to

ASTM Standard E 8 (2) were used. The elevated temperature tensile tests were conducted in vacuum using a

riominal strain rate of 1.1 x 10_/sec. Creep tests were conducted in vacuum using a constant load creep frame.

Creep testing also was conducted on NARIoy-Z samples for direct comparison to the Cu-Cr-Nb alloys.

Fully reversed, strain controlled LCF tests were conducted at room temperature, 538°C (1000°F) and 650°C
(1200°F). A triangular waveform with a constant strain rate of 0.O02/s was used. For the elevated temperature LCF

tests, an inductively heated graphite susceptor was placed around the sample to provide heating. Oxidation was

minimized by flowing Ar over the sample.

Results And Discussion

The chemical compositions of the alloys are listed in Figure 5. The alloying levels were near the values for

stochiometric Cr:Nb. A slight excess of Cr was chosen for increased hydrogen embrittlement resistance (3). The

microstructures of all Cu-Cr-Nb alloys were very similar. Two typical transmission electron microscope (TEM)

micrographs are presented in Figure 6. The images show the presence of large amounts of Cr2Nb precipitates in a

nearly pure Cu matrix. The interactions between dislocations and precipitates are currently under investigations, but

as the images demonstrates, the extremely fine (<15 nm) Cr2Nb are the primary strengtheners for the alloys.
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The tensile strength of the alloys are presented in Figure g. The values for NARIoy-Z are the minimum design

values reported by Rocketdyne (4). The average values are between 5% and 10% higher. Work is currently

underway to tensile test NARIoy-Z samples for direct comparisons. The results show clearly that the Cu-Cr-Nb

alloys have a significant advantage in yield strength at all temperatures tested. In particular, the Cu-Cr-Nb alloys

have approximately twice the elevated temperature strength of NARIoy-Z above 400°C. An alternative way of

looking at the results is the Cu-Cr-Nb alloys maintain their yield strengths to a much higher temperature than

NARIoy-Z. To a lesser extent, Cu-Cr-Nb alloys have a higher ultimate tensile strength (UTS) than NARloy-Z.

Three typical creep curves are presented in Figure 9. The stress for NARIoy-Z had to be decreased to achieve

comparable creep lives at the test temperatures. Figure 10 compares the creep lives for Cu-8 Cr-4 Nb and NARloy-

Z. For simplicity, the lives of Cu-4 Cr-2 Nb are not shown, but they were approximately half that of Cu-8 Cr-4 Nb

samples. In all cases, the Cu-Cr-Nb alloys have a much greater life and stress capability. It is particularly
interesting to note that the creep life of Cu-8 Cr-4 Nb tested at g00°C is nearly identical to NARIoy-Z at 650°C.

This again indicates the possibility for increased operating temperatures and/or stresses with the Cu-Cr-Nb alloys.

A typical set of Cu-8 Cr-4 Nb LCF loops are presented in Figure 11. Cu-8 Cr-4 Nb exhibits some strain hardening,

but not as much as many other alloys. The LCF lives of Cu-8 Cr-4 Nb and NARIoy-Z are presented in Figure 12.

At room temperature, Cu-8 Cr-4 Nb is equal to NARIoy-Z at 2% total strain, the worst case, even though it has a

lower ductility. At lower total strains, Cu-8 Cr-4 Nb lives were approximately 50% greater than NARIoy-Z. The

results for elevated temperature LCF testing showed that the Cu-8 Cr-4 Nb samples had lives 50% to 200% greater

than NARloy-Z at 538°C. The results from testing at 650°C showed little difference from the 538°C tests. This

again indicates the possibility of increased temperature capability over NARioy-Z.

Summary And Conclusions

The Cu-Cr-Nb alloys have significantly higher strengths than NARIoy-Z at all temperatures tested. Usable strengths

were retained up to approximately 700°C (1300°F). The creep properties of the Cu-Cr-Nb alloys were also greatly

improved over NARIoy-Z. The lives at a given stress were increased by up to 2-3 orders of magnitude with the

largest increases occurring at the higher temperatures. Alternatively, the Cu-Cr-Nb alloys were capable of

supporting a stress 10% to 50% greater than NARloy-Z for a given life. LCF testing showed Cu-8 Cr-4 Nb was

equal to or better than NARIoy-Z at room temperature. At elevated temperatures, the Cu-8 Cr-4 Nb was clearly
superior to NARIoy-Z and did not have any significant change in LCF between 538°C and 650°C.

Taken in total, the results indicate the possibility of trade-offs of temperature and stresses that could greatly increase

the operating parameters of hypersonic vehicle heat exchangers.

Future Work

Future work will focus on completing the tensile testing of NARloy-Z to provide a direct comparison to the Cu-Cr-

Nb data. In addition, research will examine the oxidation behavior of the Cu-Cr-Nb alloys in air and two potential

engine environments. Since the fabrication of heat exchangers may require a sheet product, several tests will be

conducted to determine a suitable rolling schedule and heat treatments.
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Background

Originally developed for Orbital Transfer Vehicle

(OTV) under Earth-To-Orbit (ETO) program

Alloys designed to meet needs of combustion
chamber liner

- High elevated temperature strength and creep
resistance

- Long low cycle fatigue (LCF)life

- High thermal conductivity

- Properties that meet or exceed those of currently
used NARIoy-Z (Cu-3 Ag-0.5 Zr)

Fig. 1

Program Objectives

Quantify tensile, creep and thermal conductivity at a
level suitable for initial design work on hypersonic
aircraft combustors and rocket combustion chamber

liners

Fig, 2
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Experimental Procedure

Production of Cu-Cr-Nb Alloys

• Conventionally atomized
powders produced by
Special Metals

• Extruded at 870°C (1575°F)

• 16:1 reduction in area

• Full consolidation achieved

Tensile Testing

• Subsized tensile

specimens

• Vacuum testing

• Strain rate = 0.00011/sec

Fig. 3

Experimental Procedure (Cont.)

Creep Testing

• Vacuum testing

• Constant load

• Displacement recorded

by computer DAQ unit

LCF Testing

• Only Cu-8 Cr-4 Nb alloy
tested

• Strain controlled

• Fully reversed

• Triangular waveform

• Constant strain rate =

0.002/s

Fig. 4
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Microstructure Of Cu-Cr-Nb Alloys

Arrow indicates two precipitates
pinning dislocation

• Cr and Nb form a very high melting point intermetallic

compound, Cr2Nb

• Matrix is nearly pure Cu
Fig. 5

Alloy Chemistries

Alloy

Cu-4 Cr-2 Nb - Powder t

Cu-4 Cr-2 Nb

Cu-8 Cr-4 Nb - Powder t

Cu-8 Cr-4 Nb

NARIoy-Z

Ag Cr Cu Nb O* Zr Cr:Nb

3.27 Bal. 2.92 251 2.00

1.89

2.10

2.11

3.8 Bal. 3.6 N.A.

6.45 Bal. 5.49 455

6.5 Bal. 5.5 640

3.0 Bal. N.A. 0.5

All chemistries in weight percent

*O is in ppm by weight

1Chemistry supplied by Special Metals
N .A. - Not available

• Alloy designations reflect amount of Cr and Nb in atomic percent

- Cu-4 Cr-2 Nb = Cu-4 at.% Cr-2 at.% Nb

Fig. 6
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Comparison Of Densities
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• Cu-Cr-Nb alloys have yield strengths approximately
1.5 - 2X higher than NARIoy-Z

• Cu-8 Cr-4 Nb has a superior UTS compared to NARIoy-Z
- Cu-4 Cr-2 Nb has equal or better UTS than NARIoy-Z

Fig. 8
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Typical Creep Curves

Cu-4 Cr-2 Nb (6500C / 44.3 MPa)
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• Cu-Cr-Nb alloys spend the majority

of their lives in Second Stage creep

• NARIoy-Z can spend a significant

portion of its life in Third Stage

creep

• Cu-Cr-Nb creep elongations are

generally lower than those of

NARIoy-Z

Fig, 9

Comparison Of Cu-Cr-Nb And NARIoy-Z Creep Lives
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• Cu-4 Cr-2 Nb lives are approximately half that of Cu-8 Cr-4 Nb

• For a given life, Cu-8 Cr-4 Nb can support 20%+ higher stresses

• For a given stress, Cu-8 Cr-4 Nb alloy has lives 2 to 3 orders of

magnitude longer than NARIoy-Z
Fig. 10
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• Some strain hardening of Cu-8 Cr-4 Nb occurs
- Not as much as Cu

• Consistent behavior up to failure
Fig. 11
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• Cu-8 Cr-4 Nb at least as good as NARIoy-Z at room temperature

• Cu-8 Cr-4 Nb has 50% to 200% greater LCF life at 538°C (1000°F)

than NARIoy-Z

- No significant difference between 538°C and 650°C (1202°F)
Cu-8 Cr-4 Nb LCF lives

Fig 12
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Summary

• Cu-Cr-Nb alloys have much higher yield strengths than
NARIoy-Z

• Cu-Cr-Nb alloys have greatly increased creep capabilities

- 20% or greater increase in stress for a given life

- 2 to 3 order-of-magnitude increase in life for a given stress

• Cu-Cr-Nb alloys have better LCF capabilities

- Elevated temperature LCF properties are significantly
better than NARIoy-Z

• Thermal conductivity data set available in NASA
CR-198529

Fig. 13

Conclusions

• Cu-Cr-Nb alloys are attractive replacements for

NARIoy-Z in elevated temperature, high flux

applications

• Cu-Cr-Nb alloys offer considerable potential for

hypersonic aircraft heat exchangers

Fig, 14
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Future Work

• Complete NARIoy-Z tensile testing

• Perform microscopy on LCF samples

• Determine strengthening mechanism(s) by further

TEM analysis

• Examine oxidation resistance of Cu-Cr-Nb alloys

- Air

- Water saturated air

- Possible mixed O2/H2/H20/CO/CO2 environment
representative of hydrocarbon fueled engine

• Determine suitable rolling schedule and heat

treatments to produce Cu-Cr-Nb sheet

Fig. 15
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